

A fast test for toxic nanoparticles

August 2018 – July 2021

Our partners

Our network partners

NEWTEC

The challenge

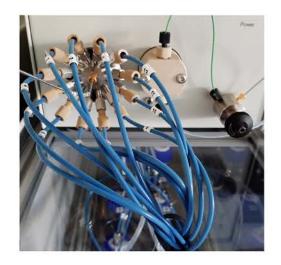
- Nanoparticles with size below 100 nm are used in various industries for product enhancements
- Below a critical size limit, NPs cross cell membranes

 possible cell death
- New standards need control of size

 fast, integratable test for such NPs necessary

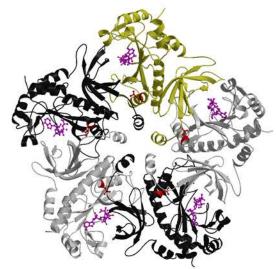
Our aim

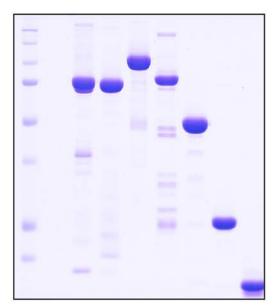
- Ultra-compact fast test prototype for toxic nano-particle detection
- Nano filters for particle pre-filtering


Our approach

- Microfluidic chip platform with integrated laser unit
- Specifically designed nano filters and particle trapping concept

Overview


Technology

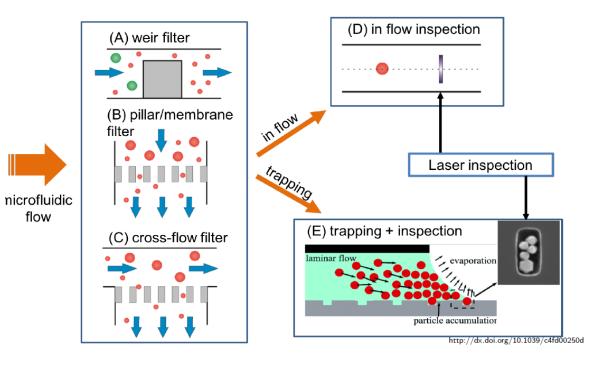


Nanoparticles – Biological Matrix

Laser-based Particle Discrimination

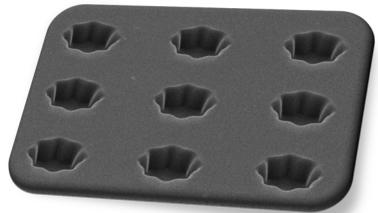
- Optical detection of "trapped" (toxic) NPs
- Based on (optical) particle resonance and its electronic analysis
- On-chip laser integration

NPs 100 nm

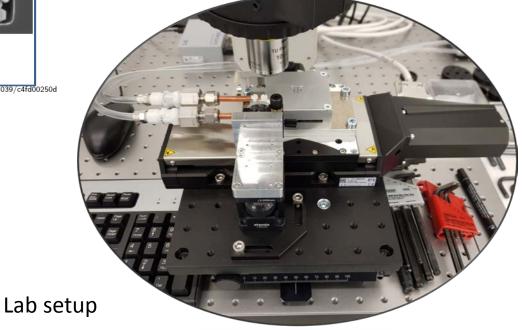

Technology

Particles of different sizes in the nano regime have different optical responses depending on their size.

Sample of commercially available silver NPs of size 100nm contain particlesdown to 20 nm.



Capillary Assisted Particle Assembly (CAPA)



Filtering in a particle trap.

Technology

NP filter

Process steps for nanofilter fabrication

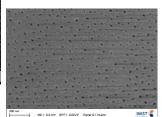
Nanofilters

Temperature: 500 °C **Atmosphere:** Argon

MD = 2.5 mm EHT = 2.00 kV Signal A = Incar

Time: 4 h

Temperature: 23 °C Voltage: 30 V **Time:** 30s **Solution:** 6% HClO₄ in Ethanol


WG = 2.6 mm EHT = 2.50 KV Signal A = SE2

Temperature: 10 °C Voltage: 40 V

Time: 60 min **Solution:**

99% 0.3 M Oxalic Acid in water

2nd Anodization:

Temperature: 10 °C Voltage: 40 V Time: 60 min Solution:

0.3 M Oxalic Acid in water

Temperature: 70 °C

Phosphoric acid & 1.8

wt% Chromic acid, in

MD = 2.2 mm SHT = 2.00 kV Signal A = Incars

Time: 60 min

Mixture of 6 wt%

Solution:

water

Pores widening: Temperature: 30 °C

Time: 30 min **Solution:**

5 wt% Phosphoric acid

in water

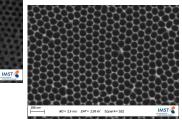
PMMA spin-coating:

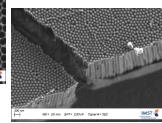
Temperature: Room Temperature.

Time & speed:

1) 8s, 800 rpm

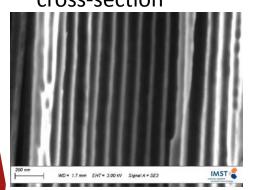
2) 20s, 3000 rpm


Solution:

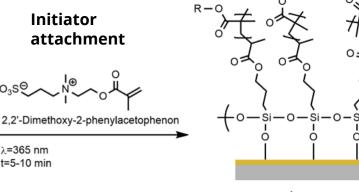

10 wt% PMMA in acetylacetone

Drying:

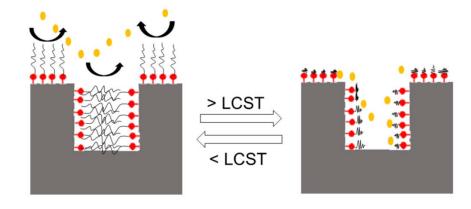
Temperature: 80 °C


Time: 3 h Al dissolving: 5.2 wt% HgCl

Nanofilter cross-section



Process steps for nanofilter functionalization with hydrophilic, thermoresponsive polymer brushes


Primerattachment

Primer on pore walls and surface

Photopolymerization Of polymer brushes

Nanofilter functionalized with thermoresponsive polymer brushes

Particle Initiator Polymer brush

> Nanoparticles are trapped below the lower critical solution temperature (LCST) and released above it

Initiator

λ=365 nm t=5-10 min

Filter Functionalization

We combine interdisciplinary competences in nano technology, bioand food technology and sensor technology of the German-Danish border region

Contact

www.checknano.eu

info@checknano.eu